Hero of Alexandria, on the making of automata

The technical works of antiquity are not well known, not least because modern technical knowledge is often necessary to understand them.  For instance a reading of an alchemical work may well baffle anyone without a Chemistry degree!  So … they go untranslated and unread.

Four years ago I listed the works of the engineer, Hero of Alexandria, here.  In this I included a reference to a translation of his work Peri automatopoietikes, on making automata: Susan Murphy, “Heron of Alexandria’s On Automaton-making“, in: History of Technology 17 (1995), 1-46.  At the time I was quite unable to locate this journal, or the translation, so the matter went no further.

A correspondent asked about this a couple of weeks ago, and then – mirabile dictu – was able to obtain a PDF by mysterious means.  The PDF originated in Sydney University library, from whose catalogue I learned that it was published in London by Mansell.  It seems that the “journal” is actually a series of books, published under the imprint of Mansell of London, by none other than Bloomsbury Press.  It is a series aimed at engineers, and so naturally shelved away from the sort of material with which we are familiar.  In fact the series seems to be widely held, and it is merely the rather generic title which makes searching difficult.

Dr Murphy’s article is 44 pages long – can that really be the size of the volume? – and itself is full of interest.  I learn that the work is illustrated in the manuscripts, with diagrams that may go back to the author but are supposedly corrupt.  The critical edition of the text does not trouble to reproduce them – no doubt because of the difficulties of printing coloured photographs – but instead has drawings by a modern author, based upon them.

The work describes the construction of  two automata, as an example of two types of automaton.

The first is a mobile shrine of Dionysus, complete with little figurines of the god and his worshippers.  This rolls of its own accord on a wheeled base to a specified point, at which the figurines enact a scene of sacrifice and pouring libations.  It then returns to the original point.

The second is a minature theatre, which stages a complete tragedy when activated.

Both types of automaton rely on a descending counterweight and various cords and axles – essentially upon clockwork.

The opening section of the work, before the technical receipes, is itself rather interesting.


Book I

1. 1. The study of automaton-making has been considered by our predecessors worthy of acceptance, both because of the complexity of the craftsmanship involved and because of the striking nature of the spectacle. For, to speak briefly, every facet of mechanics is encompassed within automaton-making, in the completion of its several parts.

2. These are the topics to be discussed: shrines or altars of appropriate size are constructed, which move forward of themselves and stop at specified locations; and each of the figures inside them moves independently according to the argument of the arrangement or story; and then they move back to their original position. Thus such realizations of automata are called mobile.

3. But there is another kind, which is called stationary, and its function is as follows: a toy stage with open doors stands on a pillar, and inside it an arrangement of figures has been set up in line with some story.

4. To begin with, the stage is closed, and then the doors open by themselves, and the painted representation of the figures is displayed. After a little while the doors close and open again of their own accord, and another arrangement of figures, sequential to the first one, appears. Again the doors are closed and opened and yet another arrangement, which logically follows the one before it, appears; and either this completes the planned story, or yet another display appears after this one, until the story finally is finished.

5. And when the figures which have been described are shown in the theatre each one can be shown in motion, if the story demands; for instance, some sawing, some chopping with the adze, some working with hammers or axes – making a noise with each blow, just as they would in real life.

6. Other movements can be effected below the stage; for instance, lighting fires or making figures which were not visible at first appear and then disappear again. Simply, anyone can move the figures as he chooses, without anybody being near them.

7. But the mechanism of the stationary automata is safer and less risky and more adaptable to every requirement than that of the moving ones. Older generations called such feats of craftsmanship miraculous because they offered an amazing spectacle.

8. Therefore, in this book I am going to write about moving automata, and set out my own complex scenario, which is adaptable to every other scenario, so that someone who wanted to offer a different presentation would not lack anything for the implementation of his own scenario. In the following book I talk about stationary automata.

Well worth hunting out this volume, if you have even the slightest interest in ancient technology.

8 thoughts on “Hero of Alexandria, on the making of automata

  1. Fascinating – I had no idea of such complex scenic automata in antiquity! It reminds me of the pre-decimal penny-operated scenes which used to be found all over the place, and are still, I think, found in some places (does Madame Tussauds in London still have them?).

  2. The interesting thing is that I was always told that Hero of Alexandria _invented_ automata, whereas he seems quite clear on the point that automata have already been around for quite a long time.

  3. Thank you so much for the ISSN, J.B. – I bet you’re right. That’s really helpful.

    Those notes of yours on the diagrams are really helpful. Thank you for this. It will be very interesting, as more manuscripts come online, to see just what is in the manuscript tradition!

Leave a Reply