Earlier this week I saw a reference online to a work by Hero of Alexandria, the ancient constructor of machines who lived at an uncertain time, possibly even in the late 1st century AD.[1] The reference was to his Mechanics.
In the Mechanica, I am told, Hero explored the parallelograms of velocities, determined certain simple centers of gravity, analyzed the intricate mechanical powers by which small forces are used to move large weights, discussed the problems of the two mean proportions, and estimated the forces of motion on an inclined plane.
The original Greek of the Mechanica is lost. Fragments are quoted by the 3rd century AD author Pappus in his Mathematical Collection; but the complete work is preserved in an Arabic translation by Qusta Ibn Luqa (9th century). (Remarkably, I found a manuscript of the Arabic online here, and a discussion of Greek mechanical texts here; an interesting page with bibliography on Hero here.).[2] The work was edited with a German translation by L. Nix in Heronis Alexandrini Opera quae supersunt, Leipzig: Teubner (1899-1914), vol. II.2 (1900), which may be found online at Wilbour Hall, here. There are extracts in English in A.G. Drachmann, The Mechanical Technology of Greek and Roman Antiquity, Copenhagen: Munksgaard, 1963, some of which are quoted by Papadopoulos at this article preview here. I wish I had access to Drachmann. UPDATE: I had forgotten the complete French translation by Barob Carra de Vaux.[3]
The reference that I saw online was in the form of a blog post. The blogger posted a couple of pages of the Arabic (p.177 and 179 of the Nix edition, book II chapter 34, questions f-i) – which relate to topics like why breaking a stick is easier if you put your knee in the middle, bending of planks, and so on- [4] and asked if someone would make a translation for him; someone familiar with medieval Arabic, and the relevant technical terms, which is quite a request. He also said that he was familiar with the standard English translation, which annoyingly he did not name, but he wanted specialist interpretation of specific words, with a view to scholarly publication. I found that, oddly, comments on the blog are only permitted from those who sent him money.[5]
Anyway, all this made me search for whatever English translation that I could find. The work has not been translated as a whole, as far as I could tell.
However I found that extracts have been turned into English in Morris R. Cohen and Israel E. Drabkin, A Source Book in Greek Science (1958), which is itself a rather remarkable and useful volume. Few will have access to it, however, so I thought that I would give a couple of these extracts here. The footnotes are those of Cohen and Drabkin.
Book I, chapters 20-23:[6]
20. Many people have the erroneous belief that weights placed on the ground may be moved only by forces equivalent to these weights. Let us demonstrate that weights placed as described may [theoretically] be moved by a force less than any given force, and let us explain the reason why this is not the case in practice.[7] Suppose that a weight, symmetrical, smooth, and quite solid, rests on a plane surface, and that this plane is capable of inclining toward both sides, that is, toward the right and the left. Suppose it inclines first toward the right. In that case we see that the given weight moves down toward the right, since it is in the nature of weights to move downward unless something supports them and hinders their motion. If, now, the side sloping downward is again lifted to the horizontal plane and restored to equilibrium, the weight will remain fixed in this position.
Again, if the plane is inclined toward the other side, that is, toward the left, the weight, too, will tend toward the lowered side, even if the slope is extremely small. The weight, in this case, does not require a force to set it m motion but rather a force to keep it from moving. Now when the weight again returns to equilibrium and does not tend in either direction, it remains in position without any force to support it. It continues to be at rest until the plane is made to slope towards either side, in which case the weight, too, tends in that direction Thus it follows that the weight, which is prone to move in any desired direction, requires, for its motion, only a very small force equal to the force which inclines it.[8] Therefore the weight will be moved by any small force.
21. Pools of water that lie on non-sloping planes do not flow but remain still, not tending toward either side. But if the slightest inclination is imparted to them they flow completely toward that side, until not the least particle of water remains in its original position (unless there are declivities in the plane in the recesses of which small parts of water remain,as sometimes happens in the case of vessels).
Now this is the case with water because its parts are not strongly cohesive but are easily separable. Since, however, bodies that cohere strongly do not, naturally, have smooth surfaces and are not easily smoothed down, the result is that because of their roughness they support one another. That is, they are engaged like cogged wheels in a machine, and are consequently prevented [from rolling].[9]
For when the parts are numerous and closely bound to one another by reason of mutual cohesion, a large coordinated force is required [to produce motion of one body made up of such parts over another]. Experience has taught men to lay logs with cylindrical surfaces under tortoises,[10] so that these logs touch only a small part of the plane, whence only the smallest amount of friction results. Logs are thus used to move weights easily, but the weight of the moving apparatus must exceed that of the load to be moved. Others plane down boards to render them smooth, fasten them together on the ground, and coat them with grease, so that whatever roughness there is may be smoothed out. Thus they move the load with little force. Columns [cylinders], even if they are heavy, may be moved easily if they lie upon the ground in such a way that only one line is in contact with the ground. This is true also of the sphere,[11] which we have already discussed.
22. Now if it is desired to raise a weight to a higher place, a force equal to the weight is needed. Consider a rotating pulley suspended perpendicular to the plane and turning about an axis at its midpoint. Let a cord be passed around the pulley and let one end be fastened to the weight and the other be operated by the moving force. I say that this weight may be moved by a force equal to it. For suppose that, instead of a force, there is, at the other end of the cord, a second weight. It will be seen that if the two weights are equal the pulley will not turn toward either side. The first weight is not strong enough to overbalance the second, and the second is not strong enough to overbalance the first, since both are equal. But if a slight addition is made to one weight, the other will be drawn up. Therefore, if the force that is to move the load is greater than the load, it will be strong enough to move the latter, unless friction in the turning of the pulley or the stiffness of the cords interferes with the motion.
23. Weights on an inclined plane have a tendency to move downward, as is the case with all bodies. If such movement does not take place we must invoke the explanation given above.[12]Suppose we wish to draw a weight up an inclined plane the surface of which is smooth and even, as is also the surface of that part of the weight which rests on the plane. For our purpose we must have a force or weight operating on the other side and just balancing the given weight, that is, conserving the equilibrium so that any addition of force will be sufficient to move the weight up the plane.
To prove our contention, let us demonstrate it in the case of a given cylinder. The cylinder has a natural tendency to roll downward because no large part of it touches the surface of the plane. Consider a plane perpendicular to the inclined plane and passing through the line of tangency between the cylinder and the inclined plane.
Clearly, the new plane will pass through the axis of the cylinder and divide the cylinder into two halves. For, given a circle and a tangent, a line drawn from the point of contact at right angles to the tangent will pass through the centre of the circle. Now pass a second plane through the same line (i.e., the line at which the cylinder touches the inclined plane) perpendicular to the horizon. This plane will not coincide with the plane previously constructed, but will divide the cylinder into two unequal parts, of which the smaller lies above and the larger below. The larger part, because it is larger, will outweigh the smaller, and the cylinder will roll down. If, now, we suppose that from the larger [of the two parts into which this plane perpendicular to the horizon divides the cylinder] that amount be removed by which the larger exceeds the smaller portion, the two parts will then be in equilibrium and their joint weight will remain unmoved on the line of tangency to the inclined plane, tending neither upward nor downward. We need, therefore, a force equivalent to this difference to preserve equilibrium.[13] But if the slightest addition be made to this force, it will overbalance the weight.
The next fragment is from Book II, chapter 34d:
d. Why do heavier bodies fall to the ground in shorter time than lighter bodies?
The reason is that, just as heavy bodies move more readily the larger is the externaI force by which they are set in motion, so they move more swiftly the larger is the internal force within themselves. And in natural motion this internal force and downward tendency are greater in the case of heavier bodies than in the case of lighter.
These kinds of works all need reliable translation. It is telling that Cohen and Drabkin plainly just translated the German translation of Nix.
It would be interesting to find if there is a real translation of Mechanics II, 34!
Like this:
Like Loading...